Predictability and calibration
beyond the medium range
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Variance/squared error

Predictability at ISI time scales: perfect model

and perfect ensemble
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Variance/squared error

Predictability at ISI time scales:
imperfect model |,
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Variance/squared error

Predictability at ISI time scales: multi-
model ensemble |,
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Ensemble-mean error (multi-model)



Notes/Questions

* |S| time scales are beyond deterministic and
probabilistic error saturation for weather

e Expect saturation of ensemble mean error to be
lower when:

— multi-model spatially varying biases cancel
— apparently random model errors cancel each other

* |s spread meaningful in very slow (predictable)
modes, or are we just dealing with slowly varying
model errors that cancel?
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Model inter-comparisons
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From Reichler, Thomas, Junsu Kim, 2008: How Well Do Coupled Models Simulate Today's Climate?. Bull. Amer. Meteor. Soc., 89, 303—-311.
doi: http://dx.doi.org/10.1175/BAMS-89-3-303
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Multi-model ensemble mean: why
does it usually improve skill?

e Model forecasts have conditional errors that
appear random, and are evenly distributed
about the observations

* Each model’s systematic errors also cancel out
systematically

Answer is still a bit unclear. Does it matter?
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Different attractor structures

Truth
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Model I:fixed point Model 2: fixed point Model 3: strange attractor

* Same Lorenz 1963 system with different parameter values can substantially alter
the dynamics

* Exchange information amongst the models by nudging each model toward the
others; tune coefficients by minimizing the ensemble mean squared error

Plots courtesy Frank Selten, KNMI, and the SUMO project
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Coupled models: displaced attractors

Model | Model 2 Model 3

* Fixed-point attractors are nudged to chaotic motion
» Attractors remain systematically biased and on opposite sides from the truth

Plots courtesy Frank Selten, KNMI, and the SUMO project
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Combination of nudged models
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* Resulting ensemble mean is negligibly different from the truth.
e Can be thought of as a calibration.

Plots courtesy Frank Selten, KNMI, and the SUMO project
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Calibration requirements
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A common approach:
guantile mapping
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Monthly-avg precip forecasts
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« ECMWEF ensemble forecasts for 2003 for a river basin in Bangledesh

* Quantile mapping improves forecasts compared to obs (dashed)

* Forecast error bounded by climatology (dotted)

* [Note] quantile mapping by grid point can preserve some of the spatial and
temporal correlations in a forecast model

Plots courtesy Tom Hopson, NCAR \
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Extreme monthly average precip
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Plot courtesy Ethan Gutmann (NCAR).
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All methods here except AR have
guantile regression as part of the
procedure (AR regression is
similar)

Extreme events generally not
preserved under
downscaling/calibration, but it is
possible (BCSDm)

Scale response depends on details
of method

Should we leave calibration to the
particular user?
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Presenting forecasts to users
(some thoughts)

* Giving a user only calibrated forecasts
eliminates/minimizes his ability to drive model
Improvement.

* We want to know from users what aspect of a
model forecast is important for their decision
process.

* Need to put actual forecasts in front of people.
Let them interact with the data. Track where they
go. Indicates both trust and utility.
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